Volt Drop Table

Current carrying capacities and associated voltage drops for twin and multicore P.V.C insulated cables, nonarmoured (copper conductors).

BS6006 & BS6346

Conductor operating temperature 70°C

	Installation methods A to C ⁺ of table 9A ('enclosed')		Installation methods E to H of table 9A ('Clipped direct')				Installation method K of table 9A ('Defined conditions')					
Conductor cross sectional area	One twin c or wit prote conducto pha a/c. O	able. With hout ctive or single ise r d/c.	One three- with or protective or one four phase	core cable, without conductor, core cable e one	One twin o without conductor a.c.	ne twin cable. With or without protective onductor single phase a.c. Or d.c. One three-core cable, with or without protective conductor, or one four core cable phase one		One twin o without conductor a.c.	One twin cable. With or without protective conductor single phase a.c. or d.c.		One three-core cable, with or without protective conductor, or one four core cable phase one	
	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre
1	2	3	4	5	6	7	8	9	10	11	12	13
mm²	A	mV	А	mV	A	mV	А	mV	А	mV	А	mV
1.0	14	42	12	37	16	42	13	37				
1.5	18	28	16	24	20	28	17	24				
2.5	24	17	21	15	28	17	24	15				
				3	•					`	•	
4	32	11	29	9.2	36	11	32	9.2				
6	40	7.1	36	6.2	46	7.1	40	6.2				
10	53	4.2	49	3.7	64	4.2	53	3.7				
16	70	2.7	62	2.3	85	2.7	70	2.3				
25	79	1.8	70	1.6	108	1.8	90	1.6	114	1.8	95	1.6
35	98	1.3	86	1.1	132	1.3	115	1.1	139	1.3	122	1.1
50					163	0.92	140	0.81	172	0.92	148	0.81
						Ac / Dc				Ac / Dc		
70					207	0.65/0.64	176	0.57	218	0.65/0.64	186	0.57
95					251	0.48/0.46	215	0.42	265	0.48/0.46	227	0.42
120					290	0.40/0.36	251	0.34	306	0.40/0.36	265	0.34
150					330	0.32/0.25	287	0.29	348	0.32/0.25	302	0.29
185					380	0.29/0.23	330	0.24	400	0.29/0.23	348	0.24
240					450	0.25/0.18	392	0.20	474	0.25/0.18	413	0.20
300					520	0.23/0.14	450	0.18	548	0.23/0.14	474	0.18
400					600	0.22/0.11	520	0.17	632	0.22/0.11	548	0.17

⁺ For installation Method C, the tabulated values are applicable only to the range up to and including 35mm². For larger sizes in this installation method, see ERA report 69-30. For cables in ducts in the floor of a building, the ERA ratings must be adjusted by the appropriate factor for the ambient temperature.

The current carrying capacities in columns 6 and 8 are applicable to flexible cables to BS 6004 Table 1(b) where the cables are used in fixed installations.

Correction Factors

For Ambient Temperature

Ambient temperature	25°C	35°C	40°C	45°C	50°C	55°C	60°C	65°C
Correction factor	1.06	0.94	0.87	0.79	0.71	0.61	0.50	0.35

Sample Formulae for the Volt Drop Table

FORMULA = LENGTH X VOLT DROP X AMPS = VOLT DROP OVER LENGTH								
1.0 mm TWIN CABLE FORMULA = 42 MV PER AMP PER METER								
10 metres at 5 amp with 1.0mm twin =	10 x 5 x 42 =	<u>2100 mv</u> 1000	2.1 volts					
20 metres at 5 amp with 1.0mm twin =	20 x 5 x 42 =	4200 MV 1000	4.2 volts					
30 metres at 5 amp with 1.0mm twin =	30 x 5 x 42 =	<u>6300 MV</u> 1000	6.3 volts					
50 metres at 5 amp with 1.0mm twin =	50 x 5 x 42 =	<u>10500 MV</u> 1000	10.5 volts					
75 metres at 5 amp with 1.0mm twin =	75 x 5 x 42 =	<u>15750 MV</u> 1000	15.7 volts					
100 metres at 5 amp with 1.0mm twin =	100 x 5 x 42 =	21000 MV 1000	21 volts					
1.5 mm TWIN CABLE FORMULA = 28 MV PER AMP PER METER								
10 metres at 5 amp with 1.5mm twin =	10 x 5 x 28 =	<u>1400 MV</u> 1000	1.4 volts					
20 metres at 5 amp with 1.5mm twin =	20 x 5 x 28 =	2800 MV 1000	2.8 volts					
30 metres at 5 amp with 1.5mm twin =	30 x 5 x 28 =	4200 MV 1000	4.2 volts					
50 metres at 5 amp with 1.5mm twin =	50 x 5 x 28 =	7000 MV 1000	7.0 volts					
75 metres at 5 amp with 1.5mm twin =	75 x 5 x 28 =	<u>10500 MV</u> 1000	10.5 volts					
100 metres at 5 amp with 1.5mm twin =	100 x 5 x 28 =	<u>14000 MV</u> 1000	14.0 volts					
2.5 mm TWIN CABLE FORMULA + 18mv PER AMP PER METER								
10 metres at 5 amp with 2.5mm twin =	10 x 5 x 17 =	850 MV 1000	0.85 volts					
20 metres at 5 amp with 2.5mm twin =	20 x 5 x 17 =	<u>1700 MV</u> 1000	1.7 volts					
30 metres at 5 amp with 2.5mm twin =	30 x 5 x 17 =	2500 MV 1000	2.5 volts					
50 metres at 5 amp with 2.5mm twin =	50 x 5 x 17 =	<u>4250 MV</u> 1000	4.2 volts					
75 metres at 5 amp with 2.5mm twin =	75 x 5 x 17 =	<u>6375 MV</u> 1000	6.3 volts					
100 metres at 5 amp with 2.5mm twin =	100 x 5 x 17 =	8500 MV 1000	8.5 volts					

MINIATURE CIRCUIT BREAKERS FOR USE IN CONJUNCTION WITH MOTOR STARTERS AND TRANSFORMERS

Table 2-1 phase 240V AC							ing	
Motor starters	ĸw	Нр	Running	С60Н	Сбонс	C60HD	NC100C	NC100D
breakers can give only short	0.12	0.166	0.55	2	1	1		
loads due to high starting	0.18	0.25	0.7	2	1	1		
currents which may be encountered: typically 3 to 12	0.25	0.33	0.87	2	2	1		
times full load current (FLC)	0.37	0.5	1.35	4	2	2		
Assumptions The tables give recommended	0.55	0.75	1.55	4	2	2		
mcb ratings for motors up to 37kW based on the following	0.75	1	1.93	6	4	2		
assumptions:	1.1	1.5	2.5	6	4	4		
Direct on-line starting	1.5	2	3.5	10	5	6		
run up time =	2.2	3	4.8	16	10	10	10	10
6 seconds, motors < 3 kW 10 seconds, motors < 22 kW	3	4	6.4	16	16	10	16	10
running currents = average values only	3.75	5	7.8	20	20	16	20	16
(individual manufacturers figures may vary)	4	5.5	8.1	25	20	16	20	16
four pole motors i.e. speed	5.5	7.5	11	25	25	16	25	16
1500 rev/min.	7.5	10	14.4	32	25	20	25	20
For Higher inertia loads i.e.	9.33	12.5	17.3	40	32	20	32	20
maybe considerably longer	11	15	21	50	40	25	40	25
than those assumed above. The rating of the mcb must	13	17.5	25	63	50	32	50	32
take account of the greater run-up time and starting	15	20	28	63	50	40	50	40
current. The required mcb	18.5	25	35		63	50	63	50
reference to time/current	22	30	40		63	50	63	50
Star/ delta starting	30	40	54			63	80	63
Since, during the changeover	37	50	65.5				100	80
current surge in the order of DOL values may be met, the mcb rating selected should be		· · · · · · · · · · · · · · · · · · ·		Table 2-1 ph	ase 240V AC I	DOL starting		
the same as that recommended for DOI	KW	Нр	Running	С60Н	C60HC	C60HD	NC100C	NC100D
starting	0.12	0.166	0.95	2	2	1		
	0.18	0.25	1.5	4	2	2		
	0.25	0.22	4 7	6	2	2		

Table 2-1 phase 240V AC DOL starting									
ĸw	Нр	Running	С60Н	Сбонс	C60HD	NC100C	NC100D		
0.12	0.166	0.95	2	2	1				
0.18	0.25	1.5	4	2	2				
0.25	0.33	1.7	6	2	2				
0.37	0.5	3	10	6	4				
0.55	0.75	4.5	16	10	6	10			
0.75	1	5.5	16	16	10	16	10		
1.1	1.5	8.5	20	20	16	20	16		
1.5	2	10.5	25	25	20	25	20		
2.2	3	15.5	32	32	25	32	25		
3	4	20	40	40	32	40	32		
3.75	5	24	50	50	40	50	40		
5.5	7.5	34	63	63	50	63	50		
6.3	8.5	36.5		63	63	63	63		
7.5	10	45			63	80	63		
11	15	66.5				100	80		

Technical Information

	VA	Primary in (A)	С60Н	Сеонс	C60HD	NC100C	NC100D				
Transformers	500	0.7	4	2	1						
produced when transformers	750	1.04	6	4	2						
10-15 times full load current.	1000	1.39	6	4	2						
Assumptions	2000	2.78	10	10	6	10					
The tables give recommended mcb ratings for single phase	5000	6.95	32	16	10	16	10				
transformers up to 12500 VA and three phase transformers	10000	13.89	50	32	20	32	20				
up to 30000 VA on the	15000	20.84		50	32	50	32				
Mcb rating	20000	27.78		53	40	63	40				
15 x normal current of	25000	34.73			50	80	50				
min instantaneous tripping cc efficient of mcb	30000	41.67			63	80	63				
	Table 4 - 1 phase transformers 240V AC supply										
	VA	Primary in (A)	Сбон	С60НС	C60HD	NC100C	NC100D				
	50	0.21	1								
	100	0.42	2	1	1						
	250	1.04	6	4	2						
	500	2.08	10	6	4						
	1000	4.17	20	10	10	10	10				
	2500	10.42	40	25	16	25	16				
	5000	20.84		50	32	50	32				
	10000	41.67			63	80	63				

Ohms Law

IF YOU KNOW	NEED TO KNOW		
VOLTS ÷ RESISTANCE	= AMPS		
VOLTS ÷ AMPS	= RESISTANCE		
VOLTS x AMPS	= WATTS		
WATTS ÷ AMPS	= VOLTS		
WATTS ÷ VOLTS	= AMPS		
AMPS x RESISTANCE	= VOLTS		

CABLE LENGTH RESISTANCE Ohms		CURRENT DRAWN		
			=	VOLT DROP
		AMPS OR M/AMPS		