Volt Drop Table

Current carrying capacities and associated voltage drops for twin and multicore P.V.C insulated cables, nonarmoured (copper conductors).

BS6006 \& BS6346

Conductor operating temperature $70^{\circ} \mathrm{C}$

Conductor cross sectiona area	Installation methods A to C† of table 9A ('enclosed')				Installation methods E to H of table 9A ('Clipped direct')				Installation method K of table 9A ('Defined conditions')			
	One twin cable. With or without protective conductor single phase a / c. Or d/c.		One three-core cable, with or without protective conductor, or one four core cable phase one		One twin cable. With or without protective conductor single phase a.c. Or d.c.		One three-core cable, with or without protective conductor, or one four core cable phase one		One twin cable. With or without protective conductor single phase a.c. or d.c.		One three-core cable, with or without protective conductor, or one four core cable phase one	
	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre
1	2	3	4	5	6	7	8	9	10	11	12	13
mm^{2}	A	mV										
1.0	14	42	12	37	16	42	13	37				
1.5	18	28	16	24	20	28	17	24				
2.5	24	17	21	15	28	17	24	15				
4	32	11	29	9.2	36	11	32	9.2				
6	40	7.1	36	6.2	46	7.1	40	6.2				
10	53	4.2	49	3.7	64	4.2	53	3.7				
16	70	2.7	62	2.3	85	2.7	70	2.3				
25	79	1.8	70	1.6	108	1.8	90	1.6	114	1.8	95	1.6
35	98	1.3	86	1.1	132	1.3	115	1.1	139	1.3	122	1.1
50					163	0.92	140	0.81	172	0.92	148	0.81
Ac / Dc Ac / Dc												
70					207	0.65/0.64	176	0.57	218	0.65/0.64	186	0.57
95					251	0.48/0.46	215	0.42	265	0.48/0.46	227	0.42
120					290	0.40/0.36	251	0.34	306	0.40/0.36	265	0.34
150					330	0.32/0.25	287	0.29	348	0.32/0.25	302	0.29
185					380	0.29/0.23	330	0.24	400	0.29/0.23	348	0.24
240					450	0.25/0.18	392	0.20	474	0.25/0.18	413	0.20
300					520	0.23/0.14	450	0.18	548	0.23/0.14	474	0.18
400					600	0.22/0.11	520	0.17	632	0.22/0.11	548	0.17

† For installation Method C, the tabulated values are applicable only to the range up to and including $35 \mathrm{~mm}^{2}$. For larger sizes in this installation method, see ERA report 69-30. For cables in ducts in the floor of a building, the ERA ratings must be adjusted by the appropriate factor for the ambient temperature.

The current carrying capacities in columns 6 and 8 are applicable to flexible cables to BS 6004 Table 1(b) where the cables are used in fixed installations.

Correction Factors

For Ambient Temperature

Ambient temperature	$25^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
Correction factor	1.06	0.94	0.87	0.79	0.71	0.61	0.50	0.35

Technical Information

Sample Formulae for the Volt Drop Table

MINIATURE CIRCUIT BREAKERS FOR USE IN CONJUNCTION WITH MOTOR STARTERS AND TRANSFORMERS

Motor starters In general miniature circuit breakers can give only short circuit protection to motor loads due to high starting currents which may be encountered: typically 3 to 12 times full load current (FLC)	Table 2-1 phase 240V AC DOL starting							
	KW	Hp	Running	C60H	C60HC	C60HD	NC100C	NC100D
	0.12	0.166	0.55	2	1	1		
	0.18	0.25	0.7	2	1	1		
	0.25	0.33	0.87	2	2	1		
	0.37	0.5	1.35	4	2	2		
Assumptions The tables give recommended	0.55	0.75	1.55	4	2	2		
mcb ratings for motors up to 37 kW based on the following	0.75	1	1.93	6	4	2		
assumptions:	1.1	1.5	2.5	6	4	4		
Direct on-line starting starting current $=7 \times$ FLC	1.5	2	3.5	10	5	6		
run up time $=$	2.2	3	4.8	16	10	10	10	10
10 seconds, motors < 22 kW	3	4	6.4	16	16	10	16	10
values only	3.75	5	7.8	20	20	16	20	16
(individual manufacturers figures may vary)	4	5.5	8.1	25	20	16	20	16
four pole motors i.e. speed approx.	5.5	7.5	11	25	25	16	25	16
$1500 \mathrm{rev} / \mathrm{min}$.	7.5	10	14.4	32	25	20	25	20
For Higher inertia loads i.e.	9.33	12.5	17.3	40	32	20	32	20
maybe considerably longer	11	15	21	50	40	25	40	25
than those assumed above. The rating of the mcb must	13	17.5	25	63	50	32	50	32
take account of the greater run-up time and starting	15	20	28	63	50	40	50	40
current. The required mcb rating can be determined by	18.5	25	35		63	50	63	50
reference to time/current curves (consult us)	22	30	40		63	50	63	50
Star/ delta starting	30	40	54			63	80	63
Since, during the changeover	37	50	65.5				100	80
current surge in the order of DOL values may be met, the				e 2-1	240V A	starting		
the same as that	KW	Hp	Running	C60H	C60HC	C60HD	NC100C	NC100D
starting	0.12	0.166	0.95	2	2	1		
	0.18	0.25	1.5	4	2	2		
	0.25	0.33	1.7	6	2	2		
	0.37	0.5	3	10	6	4		
	0.55	0.75	4.5	16	10	6	10	
	0.75	1	5.5	16	16	10	16	10
	1.1	1.5	8.5	20	20	16	20	16
	1.5	2	10.5	25	25	20	25	20
	2.2	3	15.5	32	32	25	32	25
	3	4	20	40	40	32	40	32
	3.75	5	24	50	50	40	50	40
	5.5	7.5	34	63	63	50	63	50
	6.3	8.5	36.5		63	63	63	63
	7.5	10	45			63	80	63
	11	15	66.5				100	80

	VA	Primary in (A)	C60H	C60HC	C60HD	NC100C	NC100D
Transformers High inrush currents are also produced when transformer are switched on. Typically 10-15 times full load current Assumptions The tables give recommended mcb ratings for single phase transformers up to 12500 VA and three phase transformers up to 30000 VA on the following formula. Mcb rating $15 \times$ normal current of transformer min instantaneous tripping cc efficient of mcb	500	0.7	4	2	1		
	750	1.04	6	4	2		
	1000	1.39	6	4	2		
	2000	2.78	10	10	6	10	
	5000	6.95	32	16	10	16	10
	10000	13.89	50	32	20	32	20
	15000	20.84		50	32	50	32
	20000	27.78	促	53	40	63	40
	25000	34.73	-	-	50	80	50
	30000	41.67		-	63	80	63
	Table 4-1 phase transformers 240V AC supply						
	VA	Primary in (A)	C60H	C60HC	C60HD	NC100C	NC100D
	50	0.21	1				
	100	0.42	2	1	1		
	250	1.04	6	4	2		
	500	2.08	10	6	4		
	1000	4.17	20	10	10	10	10
	2500	10.42	40	25	16	25	16
	5000	20.84		50	32	50	32
	10000	41.67			63	80	63

Ohms Law

IF YOU KNOW		NEED TO KNOW		
VOLTS : RESISTANCE		= AMPS		
VOLTS : AMPS		= RESISTANCE		
VOLTS x AMPS		= WATTS		
WATTS \div AMPS		= VOLTS		
WATTS : VOLTS		= AMPS		
AMPS x RESISTANCE		= VOLTS		
CABLE LENGTH RESISTANCE	X	CURRENT DRAWN	$=$	VOLT DROP
-----------------		-----------		
Ohms		AMPS OR M/AMPS		

